

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL
A simple & straightforward, open, intellectual property unencumbered,
easily explained, provably secure, pseudonymous, 2-party, web domain
based, authenticated identity

solution…

for the Internet.

(Secure Quick Reliable Login.)

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Presentation outline:
•

Identity authentication yesterday & today.
•

What identity authentication needs

to be.
•

SQRL’s

proposal for tomorrow.
•

The concept and the algorithm.
•

Benefits and consequences.
• Operational details.
•

What are the problems?
•

Solutions to the problems.
•

Known attacks –

offline and online.
•

Where do we get the crypto?
•

Where SQRL stands today.
•

How does it get adopted?
• Summary & questions?

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

The earliest authenticated identity:
•

Local terminal login:

•

Identification

by username

•

Authentication

by password

•

Remote (Internet) user login:

• Telnet

• FTP

•

And the progress since then?

Progress?... Huh?...

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Identity Auth today:

(Broken)
• 2-Party Systems

•

Ad hoc, with differing, arbitrary characteristics & requirements.

•

Many very poor implementations.

•

Credentials routinely escaping.

•

In self-defense, users bear burden

of protecting themselves:

•

Never use the same password twice!

•

Give fake responses to “security questions.”

•

Remember everything you’ve ever done!

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Identity Auth today:

(Broken)
• 3-Party Systems

•

Post-Snowden, no one trusts (nor should) any 3rd

party.

•

Paranoia is running high.

•

The model is “we’re in the middle.”

•

Hosted by “for profit”

entities.

•

Utilize closed “you can trust us”

proprietary “magic.”

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Just like information, identity
authentication wants to be free!

•

Identity authentication can not be a profit center.

•

The winning solution will be 100% license-free and open.
(like usernames & passwords…

only something that works!)

•

It will be understandable, clean and simple.

•

It will have a straightforward easily understood security model.

•

It will be easy and inexpensive to implement.

•

It will offer “low friction”

incremental adoption.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL in a nutshell
•

User generates one “Master Identity”

for everything, forever.
(A randomly chosen 256-bit token.)

•

A web site’s domain name is used to key a hash which produces
a private key. The matching public key is created and

registered
with the website as the user’s identity token for that site.

•

To authenticate the user at logon, the website presents a
per-logon “nonce.”

The user signs the “nonce”

using the
site-specific private key and returns both the site-specific
public key and the “nonce”

signed by the matching private key.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL in a nutshell

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

This means:
•

Users are per-site pseudonymous.
They present a unique but fixed identity to every site.
Inter-site tracking is eliminated.

•

These unique identities are synthesized from the site’s
domain name, so no per-site data needs to be stored.

•

Users give web servers “no secrets to keep.”

Web servers
receive an identity token that is only

meaningful for that

site.

•

The use of a nonce using a simple challenge/response
mechanism prevents reuse / replay attacks.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Two compatible modes of operation
•

Same device login

•

If the device being logged in already has a SQRL client
installed, it can respond to the website’s SQRL URL.

•

Cross device login

•

If the user has a SQRL client installed in their smartphone,
the smartphone

can use the website’s SQRL QR code to
perform a “cross-device”

login.

•

Note: In neither case are ANY user credentials entered into
the machine’s keyboard. Using SQRL, the user just becomes
“magically”

logged in.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Identity management & options

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

What are the problems?
•

We still need to authenticate the user to their device.

•

(One way to look at this is that we have reeled the authentication
problem way in. With secure trans-network authentication, now
the problem is mostly local…

and that’s much easier.)

•

In the future (and kinda

now) “TouchID”

might be sufficient.

•

Until then, SQRL uses a traditional password for
“something the user knows”

authentication.

•

Since this single password is used only for “local”

authentication
to the SQRL client, it is never transmitted and is unlikely to be
forgotten…

especially as SQRL becomes often used.

(1 of 2)

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

What are the problems?
•

Without a 3rd

party, the user has no recourse.

•

“I forgot my password!”

•

“I just changed my password and forgot the new one!”

•

“Malware got into my phone and stole my SQRL identity!”

•

The whole point of SQRL is that websites cannot help either.
(If they could help, they could be hacked.)

•

So we had to come up with some sort of secure emergency
recovery system that worked entirely on the client side…

(2 of 2)

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

The SQRL “Rescue Code”
•

An offline, guaranteed-high-entropy, 24-digit random number.
Example: 1484-3606-4253-9577-0233-6070
(Not user-generated, since people are not random.)

•

Generated randomly when a SQRL identity is generated.

•

NEVER stored in any device, must be printed or recorded
and stored offline.

•

Has two special powers:

•

Forgives any lost or forgotten password,
so used for “password recovery.”

•

Unlocks SQRL’s

“Identity Lock”

for identity management…

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL’s

“Identity Lock”

protocol
•

A unique application of Diffie-Hellman key agreement.

•

SQRL clients carry sufficient information to generate new
identity associations, but NOT to authenticate associations.

•

Only the “Rescue Code”

is able to authenticate (and thus
“unlock”) an association.

•

Since the “Rescue Code”

is never stored in any SQRL client,
it cannot be stolen by malware or bad guys.

•

If, somehow, a user were to lose control of their identity,
bad guys could not lock them out of their accounts.
But users can lock the bad guys out by using their rescue
code to proactively change and take back their identity.

(1 of 3)

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL’s

“Identity Lock”

protocol

Diffie-Hellman Key Agreement:

If we have public key one (PubKey1) and secret key one (SecKey1)
and public key two (PubKey2) and secret key two (SecKey2), then:

DHKA(PubKey1,SecKey2) = DHKA(PubKey2,SecKey1)
IdentityLock := MakePublic(IdentityUnlock)
ServerUnlock := MakePublic(RandomLock)
DHKA(IdentityLock,RandomLock) = DHKA(ServerUnlock,IdentityUnlock)
VerifyUnlock := MakePublic(DHKA(IdentityLock,RandomLock))

(2 of 3)

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

SQRL’s

“Identity Lock”

protocol

Performed during identity creation

Performed to lock identity Performed to unlock identity

(3 of 3)

See: https://www.grc.com/sqrl/idlock.htm

https://www.grc.com/sqrl/idlock.htm

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Known (offline) attacks
•

Only known weakness is brute-force password cracking.

•

SQRL adds some unique technology to the industry:

•

Very time consuming

memory-hard one-time password process:

•

Subsequent “Password Hint”

for successive re-auths.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Known (online) attacks
•

Spoofed SQRL login for site B on site A:

•

“LooksInnocent.com”

presents user with SQRL login for
“www.Amazon.com”

and obtains logged in session.

•

Spoofed “www.Amaz0n.com”

site presents user with SQRL
login for the real Amazon.com

site.

•

Warn user of IP address differing between queries!

•

Man-In-The-Middle interception of HTTPS

•

If attacker has this power, “authentication”
is the least of the user’s problems!

•

More and more of the Internet relies crucially upon
the functional strength and integrity enforced by the
Certificate Authority (CA) system.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

“Off the shelf”

implementation crypto
•

Colin Percival’s

Scrypt for “memory-hard”, acceleration
resistant password-based key derivation.

•

A deliberately time-consuming PBKDF2 construction, using
XOR-sum chaining with Scrypt as its PRF, to render brute-force
cracking orders of magnitude more difficult and daunting.

•

Dan Bernstein’s “NaCl”

25519 elliptic-curve cryptosystem.

•

EdDSA

(elliptic curve digital signature system).

•

Elliptic curve Diffie-Hellman (via a scalarmult

on EC).

•

Cross-platform “Libsodium”

library.

•

Misc. crypto pieces…

SHA256, SHA512, HMAC256, etc.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Where does SQRL stand today?
•

Client support
•

GRC’s reference (fully usable) SQRL client
•

(Github)

A functioning Android client
•

(Github)

A SQRL client in Python.
•

(Github)

A SQRL client in Java.
•

(Github)

A Windows Phone 8 Proof of Concept.
•

(Github)

Some work on a iOS

library.

•

Server support
•

GRC’s ISAPI (Windows IIS) reference library.
•

(Github)

A Drupal

implementation
•

(Github)

A PHP server-side implementation
•

(Github)

A “Dot-Net”

full SQRL implementation.
•

(Github)

A Haskell implementation.

•

Various sites, guides and articles.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

How does SQRL get adopted?
•

Everything about SQRL is “low-friction”:

•

A user only needs ONE identity created ONCE.
(Even if it’s not heavily used at first, it’s free and compelling.)

•

Some sites need, and will appreciate, ultra-low-friction identification.

•

Over time, users will (hopefully) ask for SQRL support everywhere.

•

Adding server-side SQRL support is already easy and will become
easier.

•

Most of SQRL’s

“heavy lift”

(which already is not very heavy)
is on the client, which only needs to be implemented once.

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

In summary
•

Encourages one identity for everything.

•

Secure against website breaches (no secrets to keep).

•

Pseudonymous, prevents tracking. Users choose to de-anonymize.

•

Simple, straightforward, open, non-proprietary, completely free,

•

Provably secure, understandable and easily auditable.

•

Most complexity in the client to ease server-side development.

•

Can co-exist side-by-side with existing identity & authentication.

•

Low-friction adoption…

so perhaps it has a chance ?

Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

Questions?

	Slide Number 1
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL
	Steve Gibson — Revolutionizing Website Login and Authentication with SQRL

